Quantile-function based null distribution in resampling based multiple testing.
نویسندگان
چکیده
Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. Methods based on marginal null distributions (i.e., marginal p-values) are attractive since the marginal p-values can be based on a user supplied choice of marginal null distributions and they are computationally trivial, but they, by necessity, are known to either be conservative or to rely on assumptions about the dependence structure between the test-statistics. Re-sampling based multiple testing (Westfall and Young, 1993) involves sampling from a joint null distribution of the test-statistics, and controlling (possibly in a, for example, step-down fashion) the user supplied type-I error rate under this joint null distribution for the test-statistics. A generally asymptotically valid null distribution avoiding the need for the subset pivotality condition for the vector of test-statistics was proposed in Pollard, van der Laan (2003) for null hypotheses about general real valued parameters. This null distribution was generalized in Dudoit, vanderLaan, Pollard (2004) to general null hypotheses and test-statistics. In ongoing recent work van der Laan, Hubbard (2005), we propose a new generally asymptotically valid null distribution for the test-statistics and a corresponding bootstrap estimate, whose marginal distributions are user supplied, and can thus be set equal to the (most powerful) marginal null distributions one would use in univariate testing to obtain a p-value. Previous proposed null distributions either relied on a restrictive subset pivotality condition (Westfall and Young) or did not guarantee this latter property (Dudoit, vanderLaan, Pollard, 2004). It is argued and illustrated that the resulting new re-sampling based multiple testing methods provide more accurate control of the wished Type-I error in finite samples and are more powerful. We establish formal results and investigate the practical performance of this methodology in a simulation and data analysis.
منابع مشابه
Package 'multtest' Title Resampling-based Multiple Hypothesis Testing
Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...
متن کاملPackage ‘ multtest ’
Description Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (cen...
متن کاملA Study of Testing Mean Reversion in the Inflation Rate of Iran’s Provinces: New Evidence Using Quantile Unit Root Test
T his paper is to examine the mean reverting properties of inflation rates for Iran’s 25 provinces over the period from 1990:4 to 2017:7. To the end, we use various conventional univariate linear and non-linear unit root tests, as well as quantile unit root test by Koenker and Xiao (2004). Results of conventional unit root tests indicate that the null hypothesis of the unit root test...
متن کاملTesting for Change Points Due to a Covariate Threshold in Quantile Regression
We develop a new procedure for testing change points due to a covariate threshold in regression quantiles. The proposed test is based on the CUSUM of the subgradient of the quantile objective function and requires fitting the model only under the null hypothesis. The critical values can be obtained by simulating the Gaussian process that characterizes the limiting distribution of the test stati...
متن کاملTesting a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability
In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical applications in genetics and molecular biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2006